DIN 6800-2:2020-08 (D)

Dosismessverfahren nach der Sondenmethode für Photonen- und Elektronenstrahlung - Teil 2: Dosimetrie hochenergetischer Photonen- und Elektronenstrahlung mit Ionisationskammern

Inha	it	Seite
Vorwo	ort	5
1	Anwendungsbereich	
2	Normative Verweisungen	7
3	Begriffe	
4	Messprinzip und Messverfahren	
5	IONISATIONSKAMMERN und PHANTOME	
5.1	Auswahl der Bauart von Ionisationskammern	
5.1.1	Allgemeines	
5.1.2	Hochenergetische Photonenstrahlung	
5.1.3	Hochenergetische Elektronenstrahlung	
5.2	Daten von Ionisationskammern	
5.3	PHANTOME	17
6	Allgemeines zur Messung der Wasser-Energiedosis	18
6.1	Gleichung zur Ermittlung der Wasser-Energiedosis	
6.2	Positionierung von Ionisationskammern bei der Messung	
6.3	KALIBRIERFAKTOR, EINFLUSSGRÖßEN und BEZUGSBEDINGUNGEN FÜR DIE KALIBRIERUNG	20
6.4	KORREKTIONSFAKTOREN für PHOTONEN- und ELEKTRONENSTRAHLUNG	
6.4.1	Allgemeines	
6.4.2	Korrektionsfaktor $k_{oldsymbol{ ho}}$ zur Berücksichtigung des Einflusses der Luftdichte	22
6.4.3	Korrektionsfaktor $k_{ m h}$ zur Berücksichtigung des Einflusses der Luftfeuchte	22
6.4.4	KORREKTIONSFAKTOR k_S zur Berücksichtigung der unvollständigen Sättigung durch	
	Rekombination	23
6.4.5	KORREKTIONSFAKTOR $k_{ m P}$ zur Berücksichtigung der Polarität der Kammerspannung	
6.4.6	Korrektionsfaktor k_r zur Berücksichtigung der unterschiedlichen Positionierung von	
	IONISATIONSKAMMERN bei der Kalibrierung und bei der Messung	25
6.4.7	Korrektionsfaktor k_T zur Berücksichtigung des Einflusses der Temperatur, außer auf	
	die Luftdichte	26
7	Messung der Wasser-Energiedosis bei Photonenstrahlung	26
7.1	Allgemeines	26
7.2	REFERENZBEDINGUNGEN für die Messung der Wasser-Energiedosis bei Photonenstrahlung	
	aus Beschleunigern	27
7.3	Kennzeichnung und Ermittlung der Strahlungsqualität der einfallenden	
	PHOTONENSTRAHLUNG	
7.4 7.4.1	Messung der Wasser-Energiedosis unter Referenzbedingungen	
7.4.1 7.4.2	Allgemeines	
7.5 7.5.1	Messung der Wasser-Energiedosis unter Nicht-Referenzbedingungen	
7.5.1 7.5.2	Allgemeines Messung der Wasser-Energiedosis auf dem Zentralstrahl in anderen Tiefen	
7.5.2	Messung der Wasser-Energiedosis im Referenzpunkt bei Variation der Feldgröße	
7.5.4	Messung von Dosis-Querprofilen	

8	Messung der Wasser-Energiedosis bei Elektronenstrahlung aus Beschleunigern	32
8.1	Allgemeines	32
8.2	REFERENZBEDINGUNGEN für die Messung der Wasser-Energiedosis bei Elektronenstrahlung	
	aus Beschleunigern	33
8.3	Kennzeichnung und Ermittlung der Strahlungsqualität der einfallenden	
	ELEKTRONENSTRAHLUNG und der Referenztiefe	33
8.4	Messung der Wasser-Energiedosis unter Referenzbedingungen	
8.4.1	Allgemeines	
8.4.2	Werte des Korrektionsfaktors $k_{E,R}$	
8.5	Messung der Wasser-Energiedosis unter Nicht-Referenzbedingungen	
8.5.1	Allgemeines	
8.5.2	Messung der Wasser-Energiedosis auf dem Zentralstrahl in anderen Tiefen	
8.5.3	Messung der Wasser-Energiedosis im Referenzpunkt bei Variation der Feldgröße	
9	Bestimmung der Messunsicherheit	
9.1	Allgemeines	
9.2	MESSUNSICHERHEIT bei der Ermittlung der WASSER-ENERGIEDOSIS	
9.3	MESSUNSICHERHEITEN der Eingangsgrößen	
9.3.1	KALIBRIERFAKTOR N	
9.3.2	Um die Nullanzeige verminderte Anzeige des Dosimeters $M-M_0$	
9.3.3	Korrektion für den Einfluss der Luftdichte $k_{ ho}$	41
9.3.4	Korrektion für den Einfluss der Luftfeuchte k_{h}	42
9.3.5	Korrektion für den Einfluss der unvollständigen Sättigung ksks	42
9.3.6	Korrektion für den Einfluss der Polarität der Kammerspannung $k_{\rm P}$	
9.3.7	Korrektion zur Berücksichtigung der unterschiedlichen Positionierung von	
71017	IONISATIONSKAMMERN bei der Kalibrierung und bei der Messung k_r	43
9.3.8	Korrektion für andere Temperatureffekte als die Änderung der Luftdichte k_T	
9.3.9	Korrektionsfaktor zur Berücksichtigung des Einflusses der Strahlungsqualität der	
7.5.7	Photonenstrahlung $k_{O,M}$	43
0210	Korrektionsfaktor zur Berücksichtigung des Einflusses der Strahlungsqualität der	13
9.3.10	ELEKTRONENSTRAHLUNG $k_{E,M}$	1.1
0.4	,	
9.4	Beispiele für Messunsicherheitsbudgets	45
Anhan	g A (informativ) Effektiver Messpunkt, Bezugspunktverschiebung und	
	KORREKTIONSFAKTOR k _r	50
A.1	EFFEKTIVER MESSPUNKT und BEZUGSPUNKTVERSCHIEBUNG	
A.2	Die Bezugspunktverschiebung bei Kompaktkammern	51
A.3	Der Korrektionsfaktor k _r	52
Anhan	g B (normativ) Umrechnung von Strahlungsqualitäts-Korrektionsfaktoren $k_{O. m R}$	53
B.1		
в.1 В.2	AllgemeinesUmrechnung von k_{O} -Werten	
B.3	Bestimmung des relativen Anstiegs der Tiefendosiskurve	55
Anhan	g C (informativ) Ermittlung der Korrektionsfaktoren für den Einfluss der	
	Strahlungsqualität $k_{Q,M}$ und $k_{E,M}$	58
C.1	Theoretische Ermittlung aus der Hohlraumtheorie	58
C.1.1	Bragg-Gray-Bedingungen	
C.1.2	Verhältnisse der Massen-Stoßbremsvermögen nach Spencer-Attix	58
C.2	Korrektionsfaktoren $k_{Q,\mathrm{M}}$ für den Einfluss der Strahlungsqualität bei	
	Photonenstrahlung	59
C.2.1	Einführung eines Störungsfaktors	
C.2.2	STÖRUNGSFAKTOR und Korrektion für den Einfluss der Strahlungsqualität unter	
	Referenzbedingungen	60
C.2.3	STÖRUNGSFAKTOR und Korrektion für den Einfluss der Strahlungsqualität unter	
	NICHT-REFERENZBEDINGUNGEN	61

C.3	Korrektionsfaktoren $k_{E,\mathbf{M}}$ für den Einfluss der Strahlungsqualität bei	
	ELEKTRONENSTRAHLUNG	62
C.3.1	Messungen unter Referenzbedingungen (Elektronenstrahlung)	62
C.3.2	Messungen unter Nicht-Referenzbedingungen (Elektronenstrahlung)	63
C.4	Berechnung von Störungsfaktoren mittels Monte-Carlo-Methoden	64
C.4.1	Allgemeines	64
C.5	Experimentelle Ermittlung von $k_{Q,M}$ und $k_{E,M}$	66
Anhar	ng D (normativ) Korrektion der unvollständigen Sättigung	68
D.1	Allgemeines	68
D.2	Experimentelle Bestimmung des Korrektionsfaktors ksks	69
D.2.1	Gepulste Strahlung	69
D.2.2	Kontinuierliche Strahlung	72
Anhar	Anhang E (normativ) Die STÖRUNGSFAKTOREN p_V und p_{Sp}	
E.1	Allgemeines	
E.2	LATERALE DOSISANSPRECHFUNKTION einer IONISATIONSKAMMER	
E.3	Messung der Lateralen Dosis-Ansprechfunktion einer Ionisationskammer	77
E.4	Korrektion der Wirkung des Volumeneffektes durch den Störungsfaktor $p_{ m V}$	
E.4.1	Allgemeines	
E.4.2	Bestimmung von $p_{ m V}$ im Maximum eines lateralen Dosisprofils	78
E.4.3	Rekonstruktion eines lateralen Dosisprofils	80
E.5	Störungsfaktor p_{sp} zur Berücksichtigung der Änderungen des energieabhängigen	
	ANSPRECHVERMÖGENS von IONISATIONSKAMMERN unter NICHT-REFERENZBEDINGUNGEN	81
E.5.1	Definition und Berechnung von p_{SD}	81
E.5.2	Werte von p _{sp}	82
Anhar	ng F (informativ) Der Einfluss der Luftfeuchte auf das Ansprechvermögen von	
	IONISATIONSKAMMERN	83
Litera	turhinweise	85
Stichy	Stichwortverzeichnis	