DIN 6800-2:2008-03 (D)

Dosismessverfahren nach der Sondenmethode für Photonen- und Elektronenstrahlung - Teil 2: Dosimetrie hochenergetischer Photonen- und Elektronenstrahlung mit Ionisationskammern

Inhal	t	Seite
Vorwo	rt	5
1	Anwendungsbereich	6
2	Normative Verweisungen	6
3	Begriffe	
•	•	
4	Messprinzip und Messverfahren	10
5	Auswahl der Bauart von Ionisationskammern für die Dosismessung und für die	40
5.1	Ermittlung von Dosisverteilungen	
5.2	PHOTONENSTRAHLUNG mit Grenzenergien von 1 MeV bis 50 MeV	
5.3	ELEKTRONENSTRAHLUNG mit Energien von 3 MeV bis 50 MeV	
6	Allgemeines zur Messung der Wasser-Energiedosis	11
6.1	Gleichung zur Ermittlung der Wasser-Energiedosis	11
6.2	KALIBRIERFAKTOR und BEZUGSBEDINGUNGEN	
6.3 6.4	EINFLUSSGRÖSSEN und KORREKTIONSFAKTORENREFERENZBEDINGUNGEN für die Messung der Wasser-Energiedosis bei Photonen- und	13
0.4	ELEKTRONENSTRAHLUNG aus Beschleunigern	13
6.5	Nicht-Referenzbedingungen und zugehörige Korrektionsfaktoren	
6.6	PHANTOM	14
6.7	Positionierung von Ionisationskammern bei der Messung	
6.7.1 6.7.2	BEZUGSPUNKTE von KOMPAKTKAMMERN und FLACHKAMMERN Positionierung von Kompaktkammern	
6.7.3	Positionierung von Flachkammern	
7	Ermittlung der strahlungsqualitätsunabhängigen Korrektionsfaktoren	
7.1	Korrektionsfaktor k_a für den Einfluss der Luftdichte	16
7.2	Korrektionsfaktor k_h für den Einfluss der Luftfeuchte	
7.3	Korrektionsfaktor $k_{\rm S}$ für den Einfluss der unvollständigen Sättigung	
7.4	KORREKTIONSFAKTOR k_P für den Einfluss der Polarität der Kammerspannung	
7.5 7.6	KORREKTIONSFAKTOR k_T für andere Temperatureffekte als die Änderung der Luftdichte KORREKTIONSFAKTOR k_T für den Einfluss der unterschiedlichen Positionierung von	18
7.0	KOMPAKTKAMMERN bei der Kalibrierung und bei der Messung	18
8	Messung der Wasser-Energiedosis bei Photonenstrahlung	
8.1	Kennzeichnung und Ermittlung der Strahlungsqualität	20
8.2	Messung der Wasser-Energiedosis unter Referenzbedingungen	21
8.2.1	Bedeutung des Korrektionsfaktors $k_{\mathcal{Q}}$	
8.2.2	Experimentelle Werte des Korrektionsfaktors $k_{\mathcal{Q}}$	
8.2.3 8.3	Berechnete Werte des Korrektionsfaktors k_Q	
8.3.1	Allgemeines	
8.3.2	Werte des Korrektionsfaktors k_{NR}	
9	Messung der Wasser-Energiedosis bei Elektronenstrahlung	26
9.1	STRAHLUNGSQUALITÄT und REFERENZTIEFE	26
9.1.1	Kennzeichnung und Ermittlung der STRAHLUNGSQUALITÄT	
9.1.2 9.2	Festlegung der Referenztiefe	
9.2 9.2.1	Messung der Wasser-Energiedosis unter Referenzbedingungen Bedeutung des Korrektionsfaktors k_E	
J		<i></i>

9.2.2	Experimentelle Werte des Korrektionsfaktors k_E	
	Berechnung des Korrektionsfaktors k_E	
9.2.4	Berechnung von k_E'	28
9.2.5	Berechnung von $k_E^{\prime\prime}$	28
9.3	Messungen unter Nicht-Referenzbedingungen	33
	Allgemeines	
	Berechnung des Korrektionsfaktors $k_{ m NR}$	
9.3.3	Einfluss der Feldgröße	36
10	Messunsicherheitsanalyse	37
	Allgemeines	
	MESSUNSICHERHEITEN bei der Ermittlung der Wasser-Energiedosis	
	MESSUNSICHERHEITEN der Eingangsgrößen	
10.3.1	Kalibrierfaktor N	38
	Um die Nullanzeige M_0 verminderte Anzeige M des Dosimeters	
	Korrektion für den Einfluss der Luftdichte $k_{ ho}$	
	Korrektion für den Einfluss der Luftfeuchte $k_{\rm h}$	
	Korrektion für den Einfluss der unvollständigen Sättigung $k_{\rm S}$	
	Korrektion für den Einfluss der Polarität der Kammerspannung k_p	
	Korrektion für die Abweichung von Referenzbedingungen $k_{\rm NR}$	
	Korrektion für den Einfluss der Strahlungsqualität der Elektronenstrahlung k_{ϱ}	
	Beispiele des Messunsicherheitsbudgets für Messungen der Wasser-Energiedosis	40
10.4	unter Referenzbedingungen	40
Anhang	A (normativ) Korrektion der unvollständigen Sättigung	44
A.1	Experimentelle Bestimmung des Korrektionsfaktors $k_{\rm S}$	
A.2	Bestimmung des Korrektionsfaktors k_{S} für ausgewählte Ionisationskammern	
Anhang	B (informativ) Berechnung der strahlungsqualitätsabhängigen Korrektionsfaktoren	49
	Verfahren zur Berechnung der Korrektionsfaktoren von Ionisationskammern als	
	Bragg-Gray-Sonden	
	Zur Positionierung von Kompaktkammern und Flachkammern	
	Berücksichtigung des Verdrängungseffektes bei KOMPAKTKAMMERN	52
B.2.2	Berücksichtigung des Kammermaterials und des Verdrängungseffektes bei FLACHKAMMERN	5 2
B.3	Verfahren zur Berechnung des Korrektionsfaktors k_0 für Photonenstrahlung	52
	Ermittlung von k_0' für Kompaktkammern	
	z ę	
B.3.2	Ermittlung von $k_0^{\prime\prime}$ für Kompaktkammern	53
	Ermittlung des Korrektionsfaktors k_O für Flachkammern	
B.4	Verfahren zur Berechnung des Korrektionsfaktors k_E für Elektronenstrahlung	54
	Ermittlung von k_E'	
D.4. Z	Ermittlung von $k_E^{\prime\prime}$	54
Anhand	g C (normativ) Experimentelle Ermittlung von $k_F^{\prime\prime}$ für FLACHKAMMERN	56
	- · · · · · · · · · · · · · · · · · · ·	
Anhang	g D (informativ) Der Einfluss der Luftfeuchte auf das Ansprechvermögen	57
Literatu	ırhinweise	58
Stichwo	ortverzeichnis	61
Tabelle	n	
Tabelle	1 — Zusammenstellung der Einflussgrössen und der Bezugsbedingungen	12
Tahelle	2 — Geometrische Referenzbedingungen für die Messung der Wasser-Energiedosis	
. abolic	bei Photonen- und Elektronenstrahlung aus Beschleunigern	13

Tabelle 3 — Elektronendichte (Elektronenzahl/Volumen) $ ho_{ m e}$ = $(ho/m_{ m u})$ $(Z/A_{ m r})_{ m eff}$ für einige Stoffe15	j
Tabelle 4 — Berechnung des Korrektionsfaktors $k_{\rm S}$: Werte für die in Gleichung (3) einzusetzenden Koeffizienten, angegeben für typische Bauarten von Ionisationskammern, sowie Gültigkeitsbereiche von Gleichung (3) für die Dosis pro Puls ${\it D}^{\rm P}$ und Kammerspannung U	,
Tabelle 5 — Werte des Korrektionsfaktors k_r für Kompaktkammern19)
Tabelle 6 — Werte des Korrektionsfaktors k_Q für den Bereich hochenergetischer Photonenstrahlung mit einem Strahlungsqualitätsindex zwischen 0,5 und 0,84. Diese Werte wurden aus den Werten von k_Q nach TRS 398 durch Multiplikation mit dem Faktor $(p_{ m dis})_{ m Co}/(p_{ m dis})_Q$ erhalten (siehe B.2.1)	2
Tabelle 7 — Für die Berechnung von k_E'' benötigte Werte des Innenradius r des Kammervolumens von Kompaktkammern, des Wand-Störungsfaktors $(p_{\rm wall})_{\rm Co}$ für 60 Co-Gammastrahlung und	
des Verhältnisses der Störungsfaktoren $\frac{(p_{\rm cel})_{R_{\rm 50}}}{(p_{\rm cel})_{\rm Co}}$ nach TRS 39829)
Tabelle 8 — Beispiele für berechnete Werte von $k_E^{\prime\prime}$ für ELEKTRONENSTRAHLUNG als Funktion der Strahlungsqualität R_{50} für eine Reihe von Kompaktkammern31	
Tabelle 9 — Werte von $k_{\scriptscriptstyle E}^{\scriptscriptstyle \prime\prime}$ für einige Bauarten von FLACHKAMMERN, die nach dem in Anhang C angegebenen Verfahren experimentell ermittelt wurden33	3
Tabelle 10 — Verhältnis der beschränkten Massen-Stoßbremsvermögen von Wasser zu Luft als Funktion der auf die HALBWERTTIEFE bezogenen Tiefe nach Gleichung (19). Die Tabellenwerte dienen nicht zur Auswertung, sondern zur Veranschaulichung und Kontrolle	;
Tabelle 11 — Messunsicherheitsbudget für die Dosimetrie hochenergetischer Pнотоnenstrahlung aus Beschleunigern mit Комракткаммеrn40)
Tabelle 12 — Messunsicherheitsbudget für die Dosimetrie hochenergetischer ELEKTRONENSTRAHLUNG mit KOMPAKTKAMMERN41	
Tabelle 13 — Messunsicherheitsbudget für die Dosimetrie hochenergetischer ELEKTRONENSTRAHLUNG mit FLACHKAMMERN43	;
Tabelle B.1 — Werte des Faktors $k_Q' = \left(s_{\mathrm{w,a}}^\Delta\right)_Q / \left(s_{\mathrm{w,a}}^\Delta\right)_{\mathrm{Co}}$ für Δ = 10 keV in Abhängigkeit vom	
Strahlungsqualitätsindex Q für eine Tiefe von 10 cm, einem Fokus-Oberflächen-Abstand von 100 cm und einer Feldgröße von 10 cm \times 10 cm in der Messtiefe. Die in [25] angegebenen Zahlenwerte der Massen-Stoßbremsvermögensverhältnisse für die Strahlungsqualität Q wurden durch das MassenStoßbremsvermögensverhältnis 1,133 für 60 Co-Gammastrahlung dividiert	