DIN EN 1993-1-6:2017-07 (E)

Eurocode 3 - Design of steel structures - Part 1-6: Strength and Stability of Shell Structures

Contents		Page
1.	General	4
	1.1 Scope	4
	1.2 Normative references	6
	1.3 Terms and definitions	6
	1.4 Symbols	11
	1.5 Sign conventions	15
2	Basis of design and modelling	
	2.1 General	15
	2.2 Types of analysis	15
	2.3 Shell boundary conditions	17
3	Materials and geometry	18
	3.1 Material properties	18
	3.2 Design values of geometrical data	18
	3.3 Geometrical tolerances and geometrical imperfections	18
4	Ultimate limit states in steel shells	
	4.1 A ₁ LS1: Plastic failure limit state (A ₁	19
	4.2 Design concepts for the limit states design of shells	20
5	Stress resultants and stresses in shells	
	5.1 Stress resultants in the shell	23
	5.2 Modelling of the shell for analysis	23
	5.3 Types of analysis	26
6	A1) Plastic failure limit state (LS1) (A1)	26
	6.1 Design values of actions	26
	6.2 Stress design	26
	6.3 Design by global numerical MNA or GMNA analysis	27
	6.4 Direct design	28
7	Cyclic plasticity limit state (LS2)	28
	7.1 Design values of actions	28
	7.2 Stress design	29
	7.3 Design by global numerical MNA or GMNA analysis	29
	7.4 Direct design	30
8	Buckling limit state (LS3)	30
	8.1 Design values of actions	30
	8.2 Special definitions and symbols	30
	8.3 Buckling-relevant boundary conditions	31
	8.4 Buckling-relevant geometrical tolerances	31
	8.5 Stress design	38
	A) 8.6 Design using reference resistances (A)	40
	8.7 Design by global numerical analysis using MNA and LBA analyses	42
	8.8 Design by global numerical analysis using GMNIA analysis	45

9 Fa	atigue limit state (LS4)	50
	9.1 Design values of actions	50
	9.2 Stress design	50
	9.3 Design by global numerical LA or GNA analysis	51
ANNE	EX A (normative)	52
Memb	orane theory stresses in shells	52
	A.1 General	52
	A.2 Unstiffened cylindrical shells	53
	A.3 Unstiffened conical shells	54
	A.4 Unstiffened spherical shells	55
ANNE	EX B (normative)	56
A1 Ad	ditional expressions for plastic reference resistances 街	56
	B.1 General	56
	B.2 Unstiffened cylindrical shells	57
	B.3 Ring stiffened cylindrical shells	59
	B.4 Junctions between shells	61
	B.5 Circular plates with axisymmetric boundary conditions	64
ANNE	CX C (normative)	65
Expre	ssions for linear elastic membrane and bending stresses	65
	C.1 General	65
	C.2 Clamped base unstiffened cylindrical shells	66
	C.3 Pinned base unstiffened cylindrical shells	68
	C.4 Internal conditions in unstiffened cylindrical shells	70
	C.5 Ring stiffener on cylindrical shell	71
	C.6 Circular plates with axisymmetric boundary conditions	73
ANNE	EX D (normative)	75
Expre	ssions for buckling stress (AC) deleted text (AC)	75
	D.1 Unstiffened cylindrical shells of constant wall thickness	75
	D.2 Unstiffened cylindrical shells of stepwise variable wall thickness	85
	D.3 Unstiffened lap jointed cylindrical shells	90
	D.4 Unstiffened complete and truncated conical shells	92
A ₁ An	nex E (normative)	97
Expre	ssions for reference resistance design (A1	97